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SECTION 1
SUMMARY

Objectives

The contract "Study of the Liquid-Solid Transition for Materials
Processing in Space" has two primary objectives:

1. To analyze the behavior of dense Tiquids near the solidification
point while the liquid in question is under the influence of
magnetic fields or near-zero gravity conditions, and

2. to do this within the framework of existing liquid state models
and classical field theory.

These objectives have been accomplished, and this report presents the
results obtained thereby.

Approach
The approach taken to this study began by defining four tasks:

Task 1 - Model Identification and Assessment

Task 2 - Determination of Alternate Approach(es) as Required

Task 3 - Incorporation of Models into Field Theory and Thermodynamic
Property Derivation

Task 4 - Analysis of Convection, Diffusion and R-F Field Effects.

The models and approaches identified in Tasks 1 and 2 were combined
formally with classical field theory in Task 3. In Task 4, the
equations derived were used to qualitatively analyze the effects
which external fields have on dense liquids.

Liquid models are concerned primarily with liquid structure (thermodynamic
properties) or liquid transport properties. The transport properties
considered are generally diffusion coefficients, viscosity (fluidity),
nucleation rate and crystal growth rate. Calculation of these quantities
from first principles is the purpose of the models. However, these
quantities by themselves do not entirely describe liquid transport,
particularly convection, Natural convection is described by Boltzmann
transport theory and convection in a magnetic field is described by
magnetohydrodynamics (MHD) which is a combination of Boltzmann transport
theory and classical field theory. Determination of the form of MHD
theory that is required to discuss dense liquid behavior in a magnetic
field was the function of Task 2. The models do contribute tqo MHD
analysis though, by providing an equation of state for the 1{quid and

by deriving parameters such as viscosity, heat capacity and magnetic
permeability which are important constituents of the MHD equations.
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Approach  (Continued)

Field effects on diffusion were discussed in terms of the Free Volume
Model description of diffusion coefficient and crystal growth rate aug-
mented by the defining equation for isothermal compressibility. This
equation relates the change in liquid volume to the external field-
induced pressure change in the liquid. Gravitational pressure changes
between the earth's surface and earth orbit were derived as were magnetic
pressure changes in the laboratory.

Results

A thorough search of the literature identified thirty-six independent

liquid state models plus at least six models based on the Distribution
Function approach to liquid state theory. Most of the thirty-six models
treat limited aspects of the liquid state. That is, they attempt to

explain a few 1iquid properties (in some cases, only one) rather than
describing the entire Tiquid state. Those models which do try to explain

a large number of liquid properties are still being tested by the scientific
community against experiment to ascertain their accuracy and the range of
parameters to which they are applicable.

The Free Volume Model (see Section 2.1) was selected as the best of these
models on the basis of its simple view of Tiquid structure combined with
successful prediction of 1iquid transport properties, and its derived
capability for explaining thermodynamic properties. The Guggenheim Dilute
Solution Model was selected for description of two-component ("doped")
liquids while the Curie Law of paramagnetism was chosen to describe the
magnetic permeability of Tiquids.

"Backup" models determined to have possible application to materials
processing problems include:

Significant Structure Theory (1 and 2-Component Models)

Onsager Dielectric Theory

Kaiser & Rosenweig Ferrofluid Model

KuhTmann-Wilsdorf Model

Ookawa Model

Tong Model

Walls and Upthegrove Model

Shereshefsky Model

Two Structure Model

Widom Model

Central Atoms Model

Kirkwood Dielectric Theory

1-2
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Results  (Continued)

These are described in varying detail in the Task 1 report, A Summary
of Liquid State Models for Materials Processing in Space (Reference 1).
The remaining 20 models were considered not suitable for materials
processing problems for one or more of the following reasons:

1. the model is gross]y inaccurate when compared with experiment,
the model is not yet sufficiently developed,

3. the mathematical description of the model involves extremely large
sums or products (~1023 terms) or requires other calculations
which cannot be performed analytically,

4. the model is designed for special applications which are outside
the scope of this. study.

Thus, several models are required to describe dense liquid phenomena, but
these models compliment each other in creating a basis for materials
processing in space research. It should be noted that the need for
several models (or approximations) would have been the same had the
Distribution Function approach (Reference 1) been chosen, since all
approaches to describing the liquid state are imperfect at present.

In Task 3, the five simultaneous equations of magnetohydrodynamics were
specialized to the case of a dense liquid in the transverse field of a
laboratory magnet, Thermodynamic properties were derived from the
partition functions of the Free Volume Model and the Guggenheim Model,
and the distribution of eddy currents in a conducting Tiquid with alter-
nating magnetic field was calculated. Also, time-dependent equatians
for the velocity and distribution function of diffusing molecules were
found, though solutions to these equations were not obtained. Finally
the explicit mathematical form of the magnetic field due to a laboratory
electromagnet was determined. This explicit representation of magnetic
fields in terms of spatial coordinates is required to calculate vector
derivatives of the fields (on which the magnetic forces depend).

The magnetic field effects on liquids are really of three types: static
and dynamic body forces and eddy current effects. Since the materials of
interest in this contract (group III and group V elements and their
compounds) are paramagnetic and conducting (o ~10% ohm=! cm-!), the
static body forces are completely negligible compared to the dynamic
effects. The dynamic body force arises from the convective motion of

the 1iquid with velocity u in the presence of a static magnetic field,
while the eddy current force is present only_ whep the figld changes in
time. Both these forces depend on the term J x B where B is the magnetic
induction in the liquid.

> > > -
In the dynamic case, J=V x H, while in the case of eddy currents, J is

proportional to the time derivative of B. In either case, the fields
can in principle be arranged so that the magnetic body force opposes

1-3
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Results (Continued)

the convective flow caused by gravitational body forces. However, the
actual laboratory configuration which successfully eliminates or
drastically reduces convection may be extremely difficult to achieve
because of the field geometry and field strength required. Furthermore,
the fact that the region which the magnetic field occupies is limited

in extent also 1imits the usefulness of this technique for materials
processing. In earth orbiting laboratories, magnetic field strength,
geometry and extent considerations are of course not required to

reduce convection.

The analysis of field effects on diffusion (within the framework of

the Free Volume Model) yields the interesting result that application

of a magnetic field or removal of a gravitational field will increase

the rate of crystal growth from an undercooled melt. The conditions
under which this occurs, and the different methods used to derive this
result are discussed in detail in Section 2.3. Actually, by knowing

the effects which magnetic and gravitational fields have on volume,
viscosity and temperature, one can use several models to predict that the
diffusion coefficient will increase with an increase in magnetic field
or a decrease in gravitational field. The Free Volume Model then
predicts that growth rate increases with increasing diffusion coefficient
and decreasing Gibbs free energy. This increase in growth rate has

been observed in the laboratory by Schieber (see Section 2.3).

Although the equations which predict the increased growth rate are similar
in both the magnetic and gravitational cases, this provides only a formal,
qualitative comparison. To determine which case would predict the most
significant increase, and to compare the magnetic case to Schieber's
results, quantitative calculations are required. This also involves
improved understanding of the way free volume is distributed in liquids
and more accurate determination of some of the Free Volume Model parameters.

Conclusions and Recommendations

The major conclusions to be reached from this study are:

1. the Free Volume Model is the most practical model for use in the
study of materials processing in space,

2. other models (suggested in Reference 1) are required to deal with a
wide variety of dense liquid problems,

3. both magnetic fields and low gravity conditions will produce an
increase in diffusion coefficient which will result in a increased
growth rate of a crystal,

4. Tlaboratory magnetic fields and low-gravity conditions produce quali-

tatively similar results (i.e., pressure terms) with respect to
inhibition of convection and enhancement of diffusion,

1-4
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Conclusions and Recommendations (Continued)

5. time-varying magnetic fields induce eddy currents in the Tiquid which
produce body forces and tend to disrupt convection,

6. much quantitative and experimental comparison is needed before the
relative merits of ground-based magnetic field techniques and space
processing can be ascertained,

/. the space environment provides a perfect "textbook" laboratory for
the study of those aspects of the liquid state which are not yet
understood, because in space the gravitational perturbation (so
often ignored in liquid state theory) is not present.

Thus, it is seen that the behavior of dense liquids in space and their
behavior under the influence of magnetic fields are formally quite
similar. But this does not indicate which of the two environments is
most practical for actual materials processing. Determination of the
most practical environment will require a quantitative assessment of
field geometries and field strengths required to completely offset
gravitational effects. This assessment should be performed for a
number of realistic materials processing situations.

Before calculations of this nature can be performed however, a great
deal of liquid parameter data must be obtained for each material of
interest. Parameters required include: electrical conductivity,
magnetic Reynold's number, magnetic permeability, thermal diffusivity,
viscosity, average density, characteristic convective flow velocity,
Lennard-Jones potential parameters, hard sphere molecular diameters and
liquid P-V-T data. Obtaining these parameters for liquid materials of
interest will be a major task and should begin as soon as practicable.
It is also recommended that calculations be performed utilizing the
equations of Section 2.3 to determine quantitatively the relative effects
of low gravity and magnetic fields on diffusion and solidification rate
in dense liquids. These calculations should also be compared to the
results obtained experimentally by Schieber. Finally, it is recommended
that a number of space experiments be defined and initiated to measure
dense liquid thermodynamic and transport properties under low-gravity
conditions. Specifically these properties should include temperature,
pressure, volume, internal energy, Gibbs free energy, enthalpy, entropy,
diffusion coefficient, viscosity and solidification rate.

1-5
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SECTION 2
ANALYTICAL RESULTS

2.1 A REVIEW OF LIQUID STATE MODELS

There are two analytical approaches available for the study of the liquid
state: the Distribution Function approach and the Liquid Model approach.
The Distribution Function approach is the more rigorous of the two, but
often its mathematical formulation involves integral equations or other
computations which cannot be solved in closed form. Even when solution
is possible, the results do not compare more favorably with experiment
than do results obtained from the model approach. The Distribution
Function approach is particularly inaccurate in its description of
liquids near the liquid-solid transition. On the other hand, liquid
models are available which are specifically designed to describe dense
1iquids near the liquid-solid transition, and which are constructed to

be mathematically more practical than the Distribution Function approach.
In addition, most models are based on combinations of experimental
observations and simple assumptions which make them conceptually easy to
understand. For these reasons, the Liquid Model approach is recommended
for application to practical materials processing problems in the space
environment.

In general, different models describe different 1iquid properties. For
instance, some models describe thermodynamic properties while others
describe transport or electric or magnetic properties. A few models

such as the Free Volume Model (as developed by Boeing) or the Significant
Structures Model, address both thermodynamic and transport properties. A
detailed discussion of 1iquid state theory and liquid models is contained
in the Interim Report for Task 1 of this contract (Reference 1). However,
a brief review of liquid state concepts, assumptions and models important
to the study described by this report is appropriate here.

Basic Assumptions

The most important assumption in the study of liquids is that almost all
the properties of a 1iquid may be calculated from the interactions of
pairs of molecules, and that contributions from "3-body" or higher order
interactions can be neglected. Equally important is the assumption that
these interactions are additive. Specifically, it is assumed that the
total potential energy of a system of molecules is given by:

2-1
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2.1 (Continued)

where ¢{j (r13)1s the potential energy between molecules i and j, which
are separated by a distance V{j- While it is obvious that the force on

a molecule in a liquid is due to the effects of all other molecules in
the liquid, the pair approximation (equation 1) is necessary to simplify
mathematical analysis and has been justified by agreement with experiment
in many instances.

Thermodynamic and mechanical properties of liquids are derived from a
quantity called the partition function (P.F.) which has the form:

= ZkQ(Na Va T) . (2)

The first factor, z,, is the kinetic P.F. which is derived from the
motions of the 1nd1b1dua1 particles in the liquid. If only translational
motion of the particles is considered, the kinetic P.F. is simply:

n
2 -3N

2mmkT . ()

h?

Zk=

where T is absolute temperature, N is the number of particles, k is
Boltzmann's constant, h is Planck's constant, m is the mass of one
particle and X is the thermal waveiength.

The second factor in equation 2 is called the configuration partition
function and is defined by the expression:

QYD) = gy J e T e (4)

which is an integration over the three space coordinates of the N particles
in the system where ¢ is the total energy of the system. As equation 1
indicates, for real liquids ¢ is an extremely complicated function of
coordinates. This is why many different models of the liquid state have
been developed - to allow one to calculate approximate expressions for
Q(N,V,T) from certain simplifying assumptions about the liquid situation

of interest, which will then yield predictions about that situation which
are reasonably accurate.

An assumption usually made to evaluate equation 4 is that all ¢ . have
the same form. Then equation 1 reduces to:

I~ =2
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2.1 (Continued)

where i now labels the distance vector, r., between each pair of molecules.
In cell models of liquids it is assumed that all molecules are situated

in cells defined by their nearest-neighbors. The average radii of all
cells are assumed to be equal, that is ry = rj, so that (Reference 2):

o = No(r) (6)

This greatly simplifies the integration over coordinates and thus the
configuration P.F. itself. Unfortunately, the correct form for ¢ (r)

is not known, though several approximate forms which are based on careful
experimental observation are available. The most widely used of these is
the Lennard-Jones potential:

s = (2) " - (2] “ o

where eis an interaction energy constant and ¢ is a distance parameter
equal to the value of the intermolecular separation, r, which makes

¢ (r) = 0. Thus the assumptions of equations 5, 6 and 7, coupled with
the specific assumptions of a given model, allow one to obtain approxi-
mations for Q(N,V,T).

Finally, the thermodynamic properties of the 1iquid are obtained from
the partition function by the following set of equations:

FREE ENERGY: F=-kT1InZ (8)
: E .1 (3nZ

INTERNAL ENERGY: o =T ( it ’ ) (9)

. P _ [3lnZ

EQUATION OF STATE: = (—5‘\7‘ (10)
- S

INTERNAL ENTROPY: = TnZ+ T (alﬁz) (1)

v
1 321nZ ]
ISOTHERMAL COMPRESSIBILITY: 8 = - V{kT ("a"vﬂé’T] (12)
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2.1 (Continued)

Once these basic functions are known, all other thermodynamic properties
may easily be found (References 3 and 4). The next three subsections
will discuss the three models most applicable to the Liquid-Solid Transi-
tion Study.

The Free Volume Model

The Free Volume Model, which has been developed by Turnbull and Cohen
(References 2 and 5-7), is perhaps the most simple model of the liguid
state which is at the same time realistic in concept, practical in its
mathematical formalism and reasonably accurate in its predictions of
1iquid properties. Development of this model has been motivated by
observed 1iquid properties which, relative to solid properties, appear

to be strongly correlated with the corresponding volume differences. The
Free Volume Model makes no specific assumption about molecular shapes, and
thus leaves one free to assume spherical shapes, or more realistic shapes
when considering polyatomic molecules, depending on the accuracy one
wishes to achieve.

The basic assumption of this model is that a liquid molecule is caged
most of the time by its nearest neighbors, and that within this cage
its free volume is defined by:

Ve = VooV (13)

where v is the specific volume (or volume of the cage), V/N, and v_ is
the actual volume of the molecule. Vo is dependent on pressure, tﬂough
for normal pressures this dependence “is negligible. It is also assumed
that the potential energy of the molecule in its cage is approximately
equal to the intermolecular potential, ¢(r), which is chosen to be the
Lennard-Jones potential, equation 7. The total partition function for
this model is then:

Z(N,V,T) =[—;§ e"b(”)/kT]N (14)

If the procedure of equation 10 is used to derive the equation of state,
one finds for the Free Volume Model:

_ _NkT 3
PV = T=V/v -~ NV (av) _ (15)
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2.1 (Continued)

In order to evaluate the partial derivative, we first note that:

RN ]

Further work with the Free Volume Model at Boeing has centered around the
"Tumped-parameter" assumption that the specific volume is directly pro-
portional to the cube of the intermolecular separation with proportion-
ality factor a_:

o
v = agrs . : (17)
This allows complete evaluation of the partial derivative in equation 15
to yield:
PV 1 0|2

V ¥

} (18)

0 is Avogadro's number) and b = (2/3)n Noo3. If
ved for a2, then:

A [V R T

where W is the compressibility factor, PV/NKT. Thus a depends on temper-
ature and pressure, but because of the form of this dependence, the varia-
tion of a from a constant value (for a given liquid) over certain ranges
of T and P should be small. Table I gives a values and deviations for
ten liquids over temperature and pressure ranges corresponding to the
dense liquid phase.

Nw
sm
—_—
N
————
o
<Io
——
N
 E——
I
w
b
R
N
—_
o
A
1
o] —

i = Tegrw Y16k

where a = ao/N0 (N
equation 187 is"sol

Equation 18, then, is the equation of state for the Free Volume Model,
and its accuracy is determined largely by the deviation of the a
parameter over the range of T and P to which it is applied. Table I
shows that this deviation is less than 20% for all 1iquids studied and
is less than 1% for water. A 20% inaccuracy, while not desirable, is
still normal for theoretical predictions of dense 1iquid properties.
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2.1 (Continued)

Since the derivative of intermolecular potential with respect to volume
occurs often in calculating thermodynamic properties from the partition
function, relation (17) has allowed the derivation of

£ 3. 4c [3a)°[Po)’[[3a)’ Po|’
. = e [3a) (2O} | (28] (9} -
INTERNAL ENERGY:  rie = 5+ [ (217) (v) [(h) ( v) 1] (20)
| A3 1 4 [3a) [bo)
LB A2 4e (3a) (20
CHEMICAL POTENTIAL: ¢k = 1n PR e (2n) ( o )
3al2 |bg|2
W3, 1 ae | 3a)7[Po)” [ [ 3a)*(bo )’
LHo_3 4e | 3a) (2o} |p[3a) o) _
ENTHALPY: s = 2 % Tovgrv * kT( ﬂ) (v) [5{2n) (v) 3} (22)
2 2 2
F 23 L 4e |3 bo 3 b
FREE ENERGY: fF = IN g;*‘ o 2 7) Uﬁ% TO) '1] (23)
ENTROPY: - = 5+ Tn Vg/a3 (24)
Nk 2 f '

The Free Volume Model treats diffusion by assuming that random density
fluctuations can open holes in the cages of individual molecules which
are large enough to permit the translation of a molecule across this void
created within its cage. Thus diffusion is viewed as the result of a
redistribution of free volume within the 1iquid rather than as the

result of an activation in the ordinary sense (Reference 5). If the

free volume exceeds some critical value, v*, then diffusion can take
place, the diffusion coefficient being:

D =

%—6u {v* + Xf) e YV Ve (25)

Y

where §1is the ratio of the mean-free-path to the "instantaneous" free
volume, u is the velocity of the molecule as it diffuses (taken to be
the gas kinetic velocity) and § is an overlap factor, lying between 1/2
and 1, which accounts for the fact that more than one molecule can have
the same value of the free volume.

Once the diffusion coefficient is known, several other transport pro-
perties become available. First, the viscosity is inversely related to
the diffusion coefficient by:
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2.1 (Continued)

. kT
" 3R D (26)
0
where R_ is the molecular diameter. Crystallization is characterized
by two Pate functions: the frequency per unit volume at which crystals
nucleate, I, and the crystal growth velocity, Ug- These furictions are:
ND' - ]6TTO'13
= 3F2kT
- [gr] e ¥ (27)
0
- AG
f 24
= n _O _ kT
e T DR [1 e ] (28)

where: o; is a parameter identified with the Tiquid-crystal surface
tension,

F is the free energy of crystallization per volume,
AG is the change in free energy at the crystal-melt surface,

and fo is the fraction of lattice sites in the boundary to which
molecules can be attached.

Strictly speaking, D' and D" are rate constants from nucleation theory,
but Turnbull (Reference 2) finds that to a good approximation, D", D' and
D can be considered identical.

It should be noted that definitions of the free volume other than equation
13 do exist (References 2, 7 and 11). However, they all involve some
combination of the specific volume, which is a thermodynamic variable,

and some reference volume which is approximately constant. Therefore,
since v_ can be calculated from handbook data for various molecules,

equatioﬁ 13 is probably more practical than the other definitions.

The critical volume for diffusion, v*, is not really specified by the

theory. But it is found experimentally that the product, yv*, is near

the molecular volume, v_, so that calculations of transport and kinetic

properties in the Free Q01ume Model are greatly simplified.

The Guggenheim Dilute Solution Model

In his classic book (Reference 12), Guggenheim presents a general treat-
ment of the dilute solution (or "doped" liquid) situation which leads to
a simple partition function for the mixture when the P.F. for the solvent

2-8
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is known. The initial assumption is that interactions between solute
molecules can be neglected, so that these molecules are viewed as a
perfect quasi-gas moving freely in a region of constant potential

energy, X . X depends on the nature of the solute, the nature of the
solvent, “and “the temperature. The partition function is thus:
0 ) N
= L]z kKT |'s
LT ( ks Ve ] (29)

where N_ is the number of solute molecules, z,_ is the k1net1c P.F. for
the so1ate (including internal effects, as de§?red ), and Z° is the P.F.

for the one-component solvent. V is the total volume, as usual. From

equation 29, the free energy is simply:

0 Zks'e
F = -kT 1n 70 - Noxg = NKT In N (30)
Differentiating F with respect to N yields the chemical potential for
the solute:
u X N
= = -5 S
o = In N, In (stvl) (31)

where N, is the number of solvent molecules and V, is the volume of the
solvent. By using the Gibbs-Duhem relation (Reference 13), the chemical
potential for the solvent is:

2l M1 N :
= +In ol
KT kT 1n N. + N (32)

where the subscript 1 refers to the solvent and the superscript o indicates
a quantity for the pure solvent substance. The importance of the chemical
potentials arises from the fact that in mixtures, the chemical potentials
are identical to the partial molar Gibbs potentials of the components

o= G, n, = G (33)
This is useful for two reasons:
(1) in any reversible isothermal process (such as the liquid - solid

transition) the decrease in Gibbs potential is equal to the net
work done by the system; and

2-9
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(2) when a mixture undergoes a first order phase transition, the
equilibrium distribution of the substance s between the two phases
is determined by the condition that ,_ have the same value in each
phase, since equal Gibbs potentials i the criterion for phase
equilibrium.

Guggenheim considered only thermodynamic properties of dilute mixtures in
his model, and neglected the transport properties. However, several other
models (Reference 1), including the Free Volume Model, provide descriptions
of transport properties of multi-component mixtures. Thus other models
must be used in conjunction with the Guggenheim model to completely des-
cribe the 1iquid system. The thermodynamic functions for dilute solutions
which have been derived from the Guggenheim model (expressed in terms of
the pure solvent functions) are: -

F Fo s (Xs Ve
. i D etmers e ot | oin
FREE ENERGY: e~ [kT In Ns*§4 (34)
N
EQ. OF STATE: PV _ POV s (35)
N kT Nkl N
N
S S0 s ( 3 Ve
ENTROPY: S 2 4 S| 3,q, Ye 36
KNk R Lzt NSXS3] (36)
. E _ EY Ng (3 X
INTERNAL ENERGY: b = gy + S [ 3- E"] (37)
H HOo Ns (5 Xg J
: et — | = - =
ENTHALPY kT NkT N, [ 2 kT E (38)
3
. = 0 ~
SPECIFIC HEAT: C, cg + > Nk (39)

The Curie Law Of Paramagnetism

The Curie law of paramagnetism was discovered experimentally by Pierre
Curie in 1895 and derived theoretically by Paul Langvin in the early
twentieth century. Langevin's procedure was to derive the average value
of the molecular magnetic dipole moments in the direction of an applied
field. The result is:

2
m<n.,
H'lﬂ

g = —n
mcos 6 T (40)
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where H. s the resulting internal field, ¢ is the angle between the
field aﬁa an individual dipole, and m is the permanent dipole moment of
a molecule.

The volume magnetization of the bulk material is obtained by multiplying

equation 40 by the density, n. The magnetic susceptability of the material
is then:

TR 3KT (41)

Once tge susceptibility of a Tiquid is known, the magnetic permeability is
given by:

o= (1 + xm) o (42)

where 1o is the permeability of free space. The magnetic induction, §,
which determines the force on a material in an external field, H, is
then related to the field by:

B = uh . (43)

The Curie Law model is important in materials processing because all
natural liquids, that is those which are not suspensions of ferromagnetic
powders, are paramagnetic or diamagnetic, with most materials of interest
in space processing being paramagnetic. This means that equation 43 holds
whereas it is invalid for ferromagnetic material. Equation 43 in turn
allows straightforward calculation of the effect,external magnetic fields
have on 1iquids. This would not be possible if B were not a linear
function of H. In practical ca]cu]at1ons, it is not a]ways necessary to
make use of equation 41. Since x_ is on the order of 10°® for para-
magnetic materials (-10-¢ for diaflagnetic materials), it is often
sufficient to use a constant value for v, since it will change only
slightly with varying temperature and density. In any event, it is the
magnetic permeability of a Tiquid which couples the liquid directly to

a static magnetic field and, with the electrical conductivity, he1ps
couple 1liquid and field when motion is involved.

2-11
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2.2 FIELD EFFECTS ON CONVECTION

To understand the effect external fields have on convection, one must
first understand the general theory of fluid flow, which is derived from
Kinetic Theory (Reference 14). The first step is the derivation of the
Boltzmann transport equation which is a ngnlinear integro-differential
equation for the distribution function f(r, u, t). f is defined so that

f (¥,u,t) d3r d3u

is the number of molecules at time t which have positions lying within

a volume element djr in the region about r and within a velocity-space
element d3u about u. Needless to say, solution of the Boltzmann trans-
port equation poses a tremendous mathematical problem. However, by
combining approximations to the transport equation with the conserva-
tion theorems for mass, momentum and energy, the equations of viscous
fluid dynamics may be derived. These are commonly called the continuity,
Navier-Stokes and temperature equations and are usually combined with

an equation of state which provides an independent relationship between
temperature, pressure and density.

It should be noted here that density, rather than specific volume, 1s
customarily used in discussing fluid flow problems. These variables
are related by:

1 _ N
U (44)

3o

where N is the total number of molecules and V is the total volume of
the system. n is sometimes called the number density to distinguish it
from the mass density, p, and m is the molecular mass.

Boltzmann transport theory and the fluid dynamics equations derived from
it might be considered as an additional model to those in Section 2.1.
Or they might be considered an alternate approach to the problem of
field effects on liquids in the sense that fluid dynamics is quite
different from the models in Section 2.1, In this sense, transport
theory may be considered as part of Task 2 of the contract, which was

to "determine alternate approach(es) as required."

The Equations of Magnetohydrodynamics

If a 1iquid is placed in a magnetic field, the theory which describes the
1iquid-field system is called magnetohydrodynamics (MHD). For the descrip-
tion of such a system, one adds to the four fluid dynamics equations
discussed above (modified to include magnetic forces) a fifth equation
which governs the behavior of the field in the region of the liquid.

The five simultaneous MHD equations are then:
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CONTINUITY: %%-+ Venu = 0 (45)
NAVIER-STOKES: o {g%-+ G-%)'ﬁ = ?T—$ P - §$-ﬁ}+ w2y (46)
TEMPERATURE : (%€-+ G~%) T = -1-(%-3) T + av2T + no (47)
Cv n
STATE ; p=0KT__ _ pin3 + AgnS (48)
1-v0n
1ol o s o> | uxhl
. L] Y uxH
FIELD: So = vH R x| & ) (49)
where: 3 is the velocity of a small liquid volume element,
+

fr is the total body force (force per unit volume) due to
external fields,

P is pressure
n is viscosity in poise (1 poise = 102 dxngmsec )
T 1is absolute temperature

cy 1is specific heat at constant volume

o 1is thermal diffusivity o = —5—
pCy

né_ is a viscous heat dissipation term

is the hard-sphere volume of a molecule vy = %«R03

v is magnetic diffusivity v = %b

R, is magnetic Reynolds number (Rm = Lupo)

A; and As are constants related to the Free Volume model parameters
(Section 2.1) by:

3abg
2n

A3=8€

y
. Ag = 165(3ab°) (50)
27
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Thus, the models discussed in Section 2.1 enter the MHD equations at
three points. Of course equation 48 comes from the Free Volume Model
(it should be replaced by the equation of state from the Guggenheim
model, when dealing with two-component 1iquids). The magnetic
permeability occurs in both v and Ry in the field equation (49), and
also contributes to the external force term, fr, in the Navier-Stokes
equation. This body force term will now be discussed in some detail.

Explicit Terms and Approximations

In the case of interest, i.e., a liquid under the influence of both
gravitational and magnetic fields, the force term can be considered
the sum of three component terms: :

GRAVITATIONAL : F =09 = - Vou (51)
. r 1 5 > 1> 2 Su
STATIC MAGNETIC: f, = - 5 H2 Vu + v ( H o3t (52)
>
MAGNETODYNAMIC:  f, = J* x B . (53)

f. is obviously proportional to the local gravitational acceleration,
which can be expressed as the gradient of a potential functign, v (or

of py where density gradients are small). The static term, f,, is the
body force which is applied to the liquid when the field is constant in
time and when the liquid is at rest. Since u has the form of equation 42,
the derivatives of u can be considered to be derivatives of the suscep-
tibility, x,. For paramagnetic (or diamagnetic) liquids, x, 15 on the
order of t18'6 and the derivatives of y; are correspondingly small. So

to a good approximation we have:

f,z0 . (54)

The magnetodynamic term really applies to two different cases depending
on whether the magnetic field is constant in time or not. For the case
of a static field with convection in the liquid, Maxwell's fourth
equation states:

I=vxH . (55)

2-14
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Therefore equation 53 becomes:
fyo= u(Ux)xdt = W[(A-9) - 7V H2] . (56)

by applying a vector identity (Reference 15). We can now write the
entire external body force term as:

1= w(l0) A -7 [op + 5w K] (57)

In simple geometries, such as those in which H; is not a function of x;,
the first term of 57 vanishes. This allows a clear comparison of the
gravitational and magnetic forces. The resulting expression:

fr= - oy + 5 u H2] (58)

says that py, which can be called a gravity-induced pressure, and & H2,
which is a magnetic pressure, are completely equivalent in a format sense.
That is, magnetic fields produce body forces the same as gravity. This
means that if the magnetic field can be controlled so that: ‘

V(7 H2) =+ T (ov) (59)

then the external body force can be minimized. The pressure gradient

in equation 46 can also be interpreted as a body force, and the magnetic
field can be used to balance this force as well. Conversely, if the
liquid is in a low-gravity orbiting laboratory, and a net body force is
desired, a magnetic field may be used to replace gravity by equation 58.

Of course, for a rigorous numerical solution of MHD problems, one must
solve equations 45-49 simultaneously for the density, temperature and
velocity distributions and for the equilibrium pressure and magnetic
field values subject to the boundary conditions of the specific problem.
However, the equations of state and continuity are basically constraint
equations (if pressure is approximately constant). Therefore, qualitative
information about fluid flow patterns, temperature distributions and
magnetic field behavior can be obtained from the remaining equations if
it is assumed that all other quantities in the respective equations

(46, 47, 49) are known. This will be attempted in the following para-
graphs.

2-15
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Magnetic Field Representations

Before considering how magnetic fields affect liquids in more detail, it
will be helpful to digress into how laboratory magnetic fields are
represented mathematically.

FIGURE 1: MAGNET GEOMETRY

Figure 1 depicts the two pole faces of a laboratory electromagnet. The
equation for the magnetic induction between the faces (before a sample
is introduced) is:

v2B, =0 . ' (60)
The general solution in cylindrical geometry is:

B, = ¢ C Io (ikr) &' (61)

where k and Ck are constants determined by the boundary conditions, r is
the radial distance from the central axis, and I, is the zeroth order
Bessel function.

If the magnetic surface charge, M, is now calculated from the currents
in the pole faces:

Moo= -4 ¥ (Fx ) (62)

N
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quation 61 may be expressed as an expansion in either r or z (Reference
16):

o0
]

47rM[F0 + F2(Z/d)2 + F4(z/d)” + .. .1, z2 < d? (63a)

lox]
1]

4FM[F0 - 1/2F2(Y‘/d)2 + 3/8F4(r/d)” -...5,r<d (63b)

where the coefficients Fp; are:

Fo = 1 - cqseo

Fo = 3/2(cos38, - cos®6,) v (63c)
- 7

Fg = -5/8(3cossg - 10cos’e, + 7cos?e )

The explicit dependence of Bz on r and z shown here allows the calculation
of vector derivatives of the field (on which the forces depend) if one
recalls that By = uHz.

Magnetic Diffusion

Equation 49, which is derived in Appendix A, relates the spatial dependence
of the magnetic field in a moving fluid to the time dependence of the field.
Problems involving dense liquids can be greatly simplified by considering
the magnetic Reynolds number in this case, where, from equation A-8:

Rm = Lu uo

For typical groupIII-groupV elements, the properties u and ¢ have the
following orders of magnitude:

10-8asec/cm

=
R

= 103 o~ lem-!

Q
14

If the experimental liquid sample has dimensions on the order of 10 cm
and natural convection in the liquid produces a velocity cn the order of
101 cm/sec, we have:
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Ry = (10cm)(10-tcm/sec)(10~8asec/cm) (1037 em™1) = 1075, (64)

Since Ry 1s so small, the second term on the right hand side of equation
49 can be neglected. This equation then becomes:

3%

=92 (65)

< -

which is a simple diffusion equation for the way the field penetrates
the Tiquid. The time constant for this penetration will be:

2 =

T = pol Rm - (66)

cr

Using the previously assumed values, this is:
1 = 1073sec = 1 msec.

Thus for static fields or for oscillating fields with frequencies of
less than 103 Hz there will be negligible screening of the field. How-
ever, for higher frequency fields, for instance RF fields at 106 Hz, the
fields will be screened with a penetration or "skin depth" of:

§ =\/-2 . (67)

HOW

For the above values of u and o, RF fields have a skin depth on the order
of 0.4 cm. This is the region in which eddy currents will be of greatest
maghitude for such fields.

Eddy Currents

The screening, or exclusion, of external magnetic fields in a conducting
medium is accomplished by the electric currents flowing in the region

of the medium (liquid) defined by the skin depth. For a conducting liquid
in a cylindrical container placed in a transverse magnetic field (see
Figure 2), there will be no ordinary current flow, since the Tiquid 1is

2-18
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not part of an electric circuit. However, if the magnetic field changes
in time with a frequency w, eddy currents will be induced which in turn
will give rise to a magnetodynamic body force:

?3 = Jg* X B . (53)

Here je* is the complex conjugate of the induced eddy current, 3é.

4+—r

i
T——
}_____.

.

— ]

FIGURE 2: LIQUID CONTAINER-MAGNET GEOMETRY

Eddy currents are determined in the following manner. According to
Faraday's law, a changing magnetic field gives rise to an induced electro-
motive force, Eq, which is related to the field and the eddy current by:

Fe = 8 3e - dl=-rrg 2 d (68)

This states that the line integral of the current around its circuit

loop is equal to the surface integral of the rate of magnetic flux change
through the surface enclosed by the loop. Equation 68 also assumes that
Ohm's law:

je = O’Ee (69)
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is valid for the liquid material under consideration. The eddy current
must also of course satisfy Maxwell's fourth equation which is repeated
here:

Je = VxH . (55)

From these four equations (53, 68, 69 and 55), the shape and direction
of the eddy current loops and the liquid flow patterns they cause will
now be deduced.

First of all, for the geometry assumed in Figure 2, the magnetic field
will have the form:

t

A o= [Hp(r,0,z) v+ Hg(r,e,z) 6] ' (70)
which yields, from equation 55, the current expression:
) oHg . aHp . dHg 1 3Hp | . iwt
je {- 57 't 53 7 v 35 | 2 e . (71)

Equation 71 indicates that in the geometry of the liquid, the currents
will have no simple symmetry. But from equation 68, we know that the
current Toops will 1ie in planes normal to the field direction (see
Figure 3). Note that the direction of current flow will reverse when

the oscillating field reverses its direction. Of course, the currents
are much stronger in the skin depth region than they are outside this
region, i.e., for r < (rp-8) there is practically no current. Thus, with
the exception of those small Toops which fit entirely in the skin depth
region and are nearest the pole faces, the current is strongest «in the .
+z directions.

- - — - - -

-
-

FIGURE 3: EDDY CURRENT LOOPS
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The £z components of the eddy current loops, then, produce the largest
~ body forces. In the absence of all other external forces, equation 53
tells us that these eddy current-produced body forces will cause liquid
flow patterns to be set up in the r-6 planes over the length of the
liquid cylinder. It should be noted that the body forces produced by
eddy currents are independent of time since the imaginary exponential
time dependence vanishes upon performing the operation J* x B. This
means physically that the field and current oscillate in phase to give
a constant force.

Before determining liquid flow patterns, we first need to know what the
skin depth configuration is. From the surface integral in equation 68,
it is obv1o§s that the net magnetic flux inducing the eddy currents is
B . rds = 'Bds coso, since r is the unit vector normal to
the cy11ndr1ca1 surface. The greatest contribution to the integral will
then be near 6=0, that is, in the direction parallel to the field, while
the contribution will fall off toward the direction transverse to the
field, o=wv/2. Thus the skin depth region will assume the shape shown

in Figure 4 where the liquid cylinder is viewed from the top.

8 = x/2

x4

x4

FIGURE 4: SKIN DEPTH CONFIGURATION AND. LIQUID
FLOW PATTERNS

From the current and field directions shown in Figure 3, equation 53 indi-
cates the force (and therefore the liquid flow if no other forces are pre-
sent) direction to be perpendicular to F and lying in the r-e plane. Since
the force will be most intense in the skin depth region, the net effect
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is to produce a flow going from the 6 = #7/2 poles toward the 6=0 or 6=n
points, thus yielding the patterns illustrated in Figure 4. These
patterns are repeated in each r-o plane of the liquid cylinder.

In physical situations, there are always forces other than magnetodynamic
forces present. Specifically, in a gravitational field, buoyancy-driven
natural convection currents will be flowing. Whatever the shape of the
convection flow patterns, they will have a large *z component which will

be disrupted by the eddy current-produced flow described above. In
addition to breaking up convective flow, eddy currents produce heating

in the region they inhabit with the heating rate having the proportionality:

(72)

'm
Q(WattS) « —&—' H?2 F'l

_m
8

where F1(rm/s) is a function which depends on the geometry of the system
(Reference 18). This heating produces a temperature rise in the liquid
which has an effect to be discussed in Section 2.3.

Magnetic Viscosity

By using equations A-3 and A-4 from Appendix A, it can be shown that:

JxB = wo (B¢ x H - wHZhy) (73)

where Et and at are the electric and velocity field components transverse
to the magnetic field. The Navier-Stokes equation |46} can be written as:
dﬁt -3

I e uo(ft x H - szﬁt) : (74)

where du/dt is the total time derivative of velocity, and

el d

= -V (pp + P =[n/3]V + U) + nv&l . (75)

In liquids it is possible for T to be small, and when eddy currents are
the largest currents present, Et will be negligible. Under these con-
ditions, induction drag will cause the motion across the field lines to
decay with a time constant:

= 1% = p
T oulZ T BT - (76)

For a system of density 5 gm/cm3 with o = 103 @ lcm™! and B = 103 gauss,
the time constant is on the order of five seconds. This drag can be
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interpreted as being due to a magnetic viscosity with an effective force
comparable to:

Fm = ou?H2u . (77)
This corresponds to an effective magnetic viscosity:

n,o= op?H2L?2 = gB2L2 (78)
which, for our example ¢, L and B is roughly one poise. For'comparison,
the viscosity of mercury is 10-2 poise while molten glass at its working
temperature is 10° poise (Reference 2). The Hartmann number is defined
as:

h =7\/ 2 (79)

and is the parameter used to determine the importance of magnetic vis-
cosity which dominates for h > 1,

For the case in which Et is not negligible, the lines of force (always
transverse to H) will be frozen into the 11qu1d and garr1ed along with
it. If the velocity of these force Tines is called w, we have for the
current in the moving system:

J = o(Ex+uwxH) (80)
-
E -
so that: W = —E;ﬁzﬂ

This is the so-called "E cross B drift" which, when substituted into
equation 74,shows that if b § 0, the liquid mot1on approaches in a time
T a ve1oc1ty such that ut w. Hence the transverse motion is still
destroyed unless ut/L >> 1.

If ¥ is not negligible, then relative transverse motion is not destroyed
but approaches a value ut such that:

By = on2H? (Et - W) . (81)
The force %; tends to push the lines of force past the field lines at such
a velocity Ehat the induced drag (viscosity) just balances x. Thus there
is always adjustment of the liquid motion (in a very short t1me) in such a
way as to produce a balance of the viscous forces! The result is a
steady-state Newtonian-type flow (after time t > 1) with:

2-23



D5-17254

2.2 (Continued)
[-V (o0 + P -{n/3}V - U)]t + n(v20), = cuZHZ(Gt -W) . (82)
Recapitulation

The point of these discussions of magnetic diffusion, eddy currents and
magnetic viscosity is to provide a theoretical explanation of the effects
which magnetic fields have on dense liquids and how they relate to the
internal driving force, -vP, and the grav1tat1ona] body force, pg = ~Upy.

It is to be remembered that the major effects in counteracting gravity-
induced convection are:

(1) eddy-current produced body forces which tend to disrupt convection
flows, and

(2) a magnetic viscosity (equation 78) which increases viscous drag
throughout the liquid and rap1d1y decays all mgtion transverse to
the field lines for situations in which ¥ and Et are small.
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2.3 FIELD EFFECTS ON DIFFUSION AND SOLIDIFICATION RATE

Diffusion Coefficient Increase

There are many liquid state models which derive expressions for diffusion
coefficients from first principles (References 2 and 19). The major
diffusion coefficient models fall into three categories, and these are the
ones which are relevant to the present study. The first category contains
the Free Volume Model in which the diffusion coefficient is primarily a
function of free volume:

8 ~yv¥/v
D = 3 (yvr 4 vp) VY (25)

where as before & in this expression is the ratio of molecular mean-free-
path to the "instantaneous" free volume. In the second category are
models which relate diffusion coefficient to the ratio of temperature to
viscosity, as in the Stokes-Einstein model:

(83)

In the third category, represented by Swalin's model (Reference 20), the
diffusion coefficient is a function of T2 only:

D= kg T2 . (84)

Based on the findings of Section 2.2, it is easy to derive the effect
magnetic fields have on the diffusion coefficients in these last two
categories. In Section 2.2 it was shown that both the temperature and
viscosity of a conducting or semi-conducting liquid will increase when

a magnetic field is applied. The result for the Swalin model is
trivial. If D' is the diffusion coefficient in changed field conditions,
it is obvious from equation 84 that D' > D,

Things are not as simple with the Stokes-Einstein type models, however.
In this case, the field-induced diffusion coefficient may be written:

2 TF A . (85)

where AT and An are the field-induced terms. Therefore we have:
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Hence if AT/T > an/n, D' will be greater than D. However, it is not obvious
that this is always the case. Of course, An/n is simply the square of the
Hartmann number, but to date, no straightforward way of calculating aT/T

has been developed.

Now consider the Free Volume Model., Here we have:

::*
D' = QE-( VE + oyt AV.) o V +Zv (87)
3y Y S A

and a little observation shows that D' is greater than D if one assumes
that application of a magnetic field causes an increase in free volume.
This will presently be shown to indeed be the case. At any rate, both
the Free Volume Model and Swalin's model indicate that magnetic fields
definitely increase the diffusion coefficient, and it is likcly that
Stokes-Einstein type models agree with this result for at least some
classes of liquids. Henceforth, we will be concerned exclusively with
the Free Volume Model, since the volume change mechanism allows us to
compare magnetic and low gravity effects most directly.

Volume Changes Due to Magnetic Fields and Low Gravity

Let us begin by considering magnetic field effects. As usual, there are
two ways to approach this problem, the first being through the theory ‘
of magnetostriction (Reference 21). This theory identifies three
different components of magnetostrictive volume change occuring over
different ranges of field strength (see Figure 5). The simplest of

these components, and the one occuring at Towest values of H, is called
the form effect. In the form effect the fractional volume change is
given by:

2.2
ay | N
7 2Cu0 (88)

! CRYSTAL E FF ECT

Led

FORM EFFECT (,E Y
W S
I == VG AN

x ¥

FIGURE 5: MAGNETOSTRICTION EFFECTS
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where N is a demagnetizing factor
Xm is magnetic susceptibility
¢ is the bulk modulus of elasticity, and
H is the field strength.

Although the other components are more complicated, it is obvious from the

figure that AV/V is always positive and generally increases with increas-
ing H. ,

The next approach to the problem of magnetic field-induced volume change
is through the definition of isothermal compressibility, equation 12.

Rewriting this equation in terms of finite volume and pressure differences,
we have: ~ ’

<A—\}’->T = -gAP (89)

where B is the isothermal compressibility coefficient. It will be re-
called that magnetic pressure was discussed in Section 2.2. The change
in magnetic pressure for the situation of interest here may be expressed
as (Reference 22):

B = - (g [Ho? - Xph?] (90)

where H, is the initial field strength before the liquid was placed in
the fie?d, and H is the resulting steady-state of field after the liquid
is placed in the field. Thus:

(%¥9T =‘(%9 Bug [Ho® = xmH?] (91)

which is always positive for H < Hy. This will occur in cases where eddy
currents or viscous flow are balanced so that the electric currents in
the liquid are negligible.

Now we consider the volume change resulting from removing a liquid quan-
tity from the earth's surface and placing it in a region of low gravity.
Once again we will use the compressibility equation, but first the
pressure change must be found. Figure 6 depicts a container of liquid
with a crystal being pulled from it. The crystal-melt system is
initially on the earth's surface.
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FIGURE 6: CRYSTAL-MELT ARRANGEMENT

If the equilibrium pressure at the surface is Py, the pressure at a poin
a distance z below the surface is given by (Reference 23): :

PE = PS + pgz . (92)

If the Tiquid is now taken into space where there is no gravitational con-
tribution, the difference in pressure at the example point will be:

AP = Pg - PE =Py - (Pg + pgz) = -pgz . (93)

Therefore, from equation 89:

(A = segz . (94)

Since all terms in equation (94) are positive, it is evident that a
decrease in hydrostatic pressure produces an increase in the volume of
the liquid. This general result is of course confirmed by everyday
experience with fluids at pressures above one atmosphere, and should be
expected to apply between zero and one atmosphere as well. One must be
careful, however, to interpret the factor g in equation (94) as the
difference between the acceleration due to gravity at the earth's surface,
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and the acceleration level in the space laboratory. This is due to the
difficulty in obtaining absolutely acceleration-free environments even

in an orbiting laboratory. But since acceleration levels are commonly

on the order of 10-3g to 10~5g in orbiting spacecraft, taking g to be the
same as the earth surface gravitational acceleration is a good approxi-
mation,

Thus the application of a magnetic field or the removal of a gravitational
(acceleration) field will cause a positive increase in liquid volume,

AV. From the definition of free volume (equation 13) it is obvious that
this volume increase is the same as an increase in the total free volume,
A(Nvg). Therefore, according to.equation (87), both magnetic fields and
low gravity conditions will cause an increase in diffusion coefficient,
i.e., D' > D.

Solidification Rate Dependence on Diffusion and Free Energy

In the Free Volume Model, the crystal growth velocity or solidification
rate of a crystal growing from an undercooled melt (Reference 2) is given
by equation 28 which is repeated here:

fo AG/KT
Ue = Dg- [1-e 1 ; (28)
0

For fixed fy and R,, the now established fact that D increases in a
magnetic field or ?ow gravity conditions would indicate a corresponding
increase in Uc if it can be shown that the exponential term decreases.

For the magnetic case it has already been shown that T' > T. The free
energy change is (Reference 24):

AG' = AG -H-M = AG - %- H2 (95)

where ¢' is a constant. Since c¢', T and H? are positive, AG' < AG so that:

AG'/KT! AG/KT

e < e

Under Tow gravity conditions, there is no gravity field-dependent change
in temperature to consider, only the change in free energy. This is:

AG' = AG + AVAP = AG - BV(AP)Z (96)
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2.3 (Continued)

where V is the volume at the earth's surface. Since (aP)2 is positive as
well as 8 and V, obviously:

26 < a6 > eP8V/KT < eAG/kT

for the gravitational field case.

Hence the solidification rate, Uc, is increased by both the application of
a magnetic field and by processing in a zero gravity field region. This
is a purely formal and qualitative result, and a true comparison of
solidification in space and solidification in magnetic fields must wait
until the parameters required by equations 28, 87, 88, 91 and 95 can be
obtained. However, it should be noted that a magnetic field-induced
increase in crystal growth rate has already been observed in the
laboratory (Reference 25). It is recommended that further research
place emphasis on the quantitative comparison of solidification in space
and solidification in the presence of magnetic fields, and on the com-
parison of the increased growth rate predicted by equation 28 and that
observed by Schieber (Reference 25).

2-30



2.4

10.

11.

12.

13.
14.
15.

16.

D5-17254

REFERENCES

R. I. Miller, A Summary of Liquid Models for Materials
Processing in Space, Interim Report - Task 1, Contract NAS8-28664,
The Boeing Company, August 15, 1972.

David Turnbull, Trans. Met. Soc., AIME, Vol. 221, p. 422, June 1961.

K. Huang, Statistical Mechanics, John Wiley and Sons, Inc.,
New York, 1967.

H. Eyring, D. Henderson, B. J. Stover and E. M. Eyring, Statistical
Mechanics and Dynamics, John Wiley and Sons, Inc., New York, 1964.

M. H. Cohen and D. Turnbull, J. Chem. Phys., Vol. 31, No. 5,
. 1164, November 1959. ‘

p
D. Turnbull and M. H. Cohen, J. Chem. Phys., Vol. 34, No. 1,
p. 120, January 1961.

D. Turnbull and M. H. Cohen, On the Free-Volume Model of the Liquid-
Glass Transition, Technical Report No. 24, Office of Naval Research,
September 1969.

Handbook of Chemistry and Physics 46th ed., Chemical Rubber Co.,
Cleveland, 1965.

W. J. Moore, Physical Chemistry, p. 229, Prentice-Hall, Inc.,
Englewood Cliffs, 1963.

R. A. Svehla, NASA Tech. Rept. R-132, Lewis Research Center,
Cleveland Ohio, 1962.

David Turnbull, "Free Volume Model of the Liquid State," in Liquids:
Structure, Properties, Solid Interactions, T. J. Hughel, ed.,
ETsevier Pub. Co., New York, pp. 6ff, 1965.

E. A. Guggenheim, Mixtures, Oxford University Press, London, pp. 89ff,
1952.

Ibid., p. 5.
K. Huang, op. cit., Ch. 3 and 5.

J. D. Jackson, Classical Electrodynamics, Ch. 10, John Wiley and
Sons, Inc., New York, 1965,

D. J. Kroon, Electromagnets, Philips Technical Library/Boston
Technical Publishers, Cambridge.

2-31



D5-17254

2.4 (Continued)

17. H. E. Duckworth, Electricity and Magnetism, Ch. 5, Holt,
Rinehart, & Winston, New York, 1961.

18. R. T. Frost, et. al., Field Management for Positioning and
Processing of Free Suspended Liquid Materials, Contract
NAS8-24683 Task IV Report, DCN 1-9-54-20055, S2, Gereral
Electric Company, May 15, 1970.

19. H. A. Walls and W. R. Upthegrove, Acta Met., Vol. 12, May 1964.
20. R. A. Swalin, Acta Met., Vol. 7, p. 736, 1959.

21. S. Chikazumi and S. Charap, Physics of Magnetism, John Wiley
and Sons, New York.

22. E. S. Shire, Classical Electricity and Magnetism, pp. 187 ff.,
Cambridge University Press, 1960.

23. F. Sears and M. Zemansky, University Physics, Addison-Wesley
Publishing Company, Reading, 1964,

24. R. Wood, Chemical Thermodynamics, Appleton-Century-Crofts,
New York, 1970.

25. M. Schieber, J. Crystal Growth, Vol. 1, p. 131, 1967.

2-32



D5-17254

APPENDIX A
DERIVATION OF THE MAGNETIC FIELD EQUATION (49)

The last two of Maxwell's equations of electrodynamics state that:

xH = J (A-1)

>
v
& oH
UXxE = -usp (A-2)

and Ohm's law for the case of a moving conducting Tiquid is:
o8 = J | (A-3)

where o is the electrical conductivity, the field E is referenced to the
"fixed" frame of an observer and E' is the electric field moving with the
liquid. Thus for a liquid of permeability u and moving with velocity

u, we have:

E' = E+uuxH . (A-4)
Combining equations A-2, A-3 and A-4 yields:
.+
* 3H
-u %?- = %—% xJd-uvx(UxH (A-5)

or, substituting from A-1 and applying the vector identity VxvxHs=
~-v2H when v « H = 0 (as is the case in electromagnetism), we find that:

H). (A-6)

and the magnetic Reynolds number to be:
Rp = Luuo ‘ (A-8)

where L is a characteristic length for the Tiquid system and u is the

magnitude of 3, equation A-6 becomes:
]Bﬁ_ 2 > ﬁxﬁ
S5 =V H+ Ry V x ( o )

which is equation 49,

A-1



